Psychology Professor Wins Alzheimer’s Association Research Grant (AARG)
Assistant Professor from the Department of Psychology, Ben Clark, was recently awarded an Alzheimer‟s Association Research Grant. This sponsor aims to fund investigators who are less than 10 years past their doctoral or post residency (MD or DO) to provide funding that will allow them to develop preliminary or pilot data, to test procedures and to develop hypotheses. Dr. Clark studies the neural mechanisms of spatial disorientation in Alzheimer's disease.
Title Neural Mechanisms of Spatial Disorientation in Alzheimer’s disease
PI Benjamin Clark, Ph.D.
University of New Mexico
Albuquerque, New Mexico
How might damage to “head direction” cells increase one’s risk of Alzheimer’s?
Background
Because Alzheimer’s disease is a progressive disorder, scientists are looking to clarify the brain changes that occur in the disease’s earliest stage, when therapies can be most effective. These early changes include the clumping of protein molecules called beta-amyloid and tau in the temporal lobe — a brain region key to learning and memory. Research has also found that people with early Alzheimer’s experience spatial disorientation, or the inability to recognize places and find their way from one location to another, even in familiar environments such as a neighborhood or home. While scientists do not know exactly how spatial disorientation develops in early Alzheimer’s disease, evidence suggests that it may involve damage to certain brain cells called “head-direction” cells. These are cell that become activated when an animal points its head in a particular direction suggesting their importance in spatial orientation. However, damage to head-direction cells may induce spatial disorientation and possibly play a role in the development of dementia.
Research Plan
Benjamin Clark, Ph.D., and colleagues plan to test the hypothesis that spatial disorientation in early Alzheimer’s disease is due in part to an impaired head-direction cell system. For this effort, they will use a novel mouse model engineered to develop beta-amyloid, tau, and other Alzheimer’s-related brain changes. They will assess whether the mice develop changes to the structure and activity of their head-direction cells, and whether these changes are associated with poor performance on spatial orientation tasks. Such work will involve sophisticated techniques for imaging brain cells and recording electrical cellular function from this network of cells.
Impact
The results of this effort, if successful, could lead to a greater understanding of the mechanism responsible for spatial disorientation in humans and the development of dementia. Ultimately, this network of cells could play an important role in early detection and treating Alzheimer’s disease.
Additional Articles
UNM professor uses grant to study Alzheimer's
UNM researchers seek novel path to understanding Alzheimer’s disease